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A finite difference scheme is proposed for two-dimensional radiation hydrody-
namical equations in the transport limit. The scheme is of Godunov-type, in which
the set of time-averaged flux needed in the scheme is calculated through Riemann
problems solved. In the scheme, flow signals are explicitly treated, while radiation
signals are implicitly treated. Flow fields and radiation fields are updated simulta-
neously. An iterative approach is proposed to solve the set of nonlinear algebraic
equations arising from the implicitness of the scheme. The sweeping method used
in the scheme significantly reduces the number of iterations or computer CPU time
needed. A new approach to further accelerate the convergence is proposed, which
further reduces the number of iterations needed by more than one order. No matter
how many cells radiation signals propagate in one time step, only an extremely small
number of iterations are needed in the scheme, and each iteration costs only about
0.8 percent of computer CPU time which is needed for one time step of a second order
accurate and fully explicit scheme. Two-dimensional problems are treated through a
dimensionally split technique. Therefore, iterations for solving the set of algebraic
equations are carried out only in each one-dimensional sweep. Through numerical
examples it is shown that the scheme keeps the principle advantages of Godunov
schemes for flow motion. In the time scale of flow motion numerical results are the
same as those obtained from a second order accurate and fully explicit scheme. The
acceleration of the convergence proposed in this paper may be directly applied to
other hyperbolic systems. c© 2000 Academic Press

Key Words:finite difference; hyperbolic system; hydrodynamics; radiation; trans-
port.

199

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



200 DAI AND WOODWARD

1. INTRODUCTION

Radiation hydrodynamical equations play an important role in laser fusion [33] and
astrophysics [12]. For many years efforts have been underway to develop numerical schemes
for radiation hydrodynamical equations, for example, see [15, 16, 21, 32, 36, 37, 42]. In the
transport limit, radiation hydrodynamical equations may be written as a hyperbolic system
of conservation laws plus emission and absorption of radiation. Physically, there are two
kinds of signals involved in the system. One is flow signals including sound waves and
entropy waves, and the other is radiation signals. Two distinctive features of the system are
that shock waves are involved and radiation signals propagate much more fast than flow
signals.

One of the major difficulties of standard numerical methods for the system is to resolve and
keep track of shocks involved. To resolve shocks, it is natural to extend established methods
for the Euler equations. During the last two decades, numerical methods for capturing shocks
have been well developed (for example, see [1, 2, 6–11, 13, 14, 20, 25–27, 29]) among which
Godunov schemes are particularly efficient for shock problems. Godunov [1] supposed that
initial data could be replaced by a set of piecewise constant data with discontinuities and
used the exact solution of Riemann problems to advance piecewise constant data. A major
extension of Godunov’s scheme was made by van Leer in his MUSCL scheme [6] which
used a Riemann solver to advance piecewise linear data. Roe developed an approximate
Riemann solver [8] suitable for the use in Godunov schemes. A nonlinear Riemann solver
and a contact steepener were developed in the piecewise parabolic method PPM [10, 14].
Key points in Godunov schemes are the use of characteristic formulations, reconstruction
of initial data, and an approximate Riemann solver which is suitable for computing a set of
time-averaged flux at grid points.

Another difficulty in numerical simulations for radiation hydrodynamics is to treat ra-
diation signals efficiently. If radiation signals are explicitly treated, the size of the time
step will be extremely small since the size is restricted by the speed at which radiation
signals propagate. For many problems, we are interested in the time scale of flow motion.
Therefore, radiation signals may be implicitly treated.

Implicit and implicit–explicit hybrid schemes for the Euler equations have been devel-
oped for many years. Beam and Warming [5] proposed an implicit scheme for hyperbolic
systems of conservation laws. Engquist and Osher [7] proposed a method for transonic
flows. Van Leer and Mulder [17] developed a scheme which is time-accurate for small time
steps and turns into a relaxation method for large time steps. Yeeet al.[18] proposed an im-
plicit TVD scheme for steady states. Glaz and Wardlaw [19] proposed a high-order Godunov
scheme for steady supersonic gas dynamics. Fryxellet al.[22] developed an implicit–explicit
hybrid scheme which extends Godunov schemes to the implicit regime. Jameson and Yoon
[23, 24] proposed an implicit scheme which is combined with the multigrid method. Loh
and Hui [28] developed a first-order Godunov scheme for steady supersonic flows. Blunt
and Rubin [30] extended a TVD scheme to fully implicit and partially implicit regimes.
Wilcoxson and Manousiouthakis [31] developed implicit time marching implementation of
the essentially non-oscillatory scheme. Dai and Woodward [38, 39] iteratively implemented
an implicit–explicit hybrid scheme.

An implicit treatment for time-dependent problems will result in a large set of (nonlinear)
algebraic equations at each time step, which, typically, are first linearized and then solved by
either a direct method or an iterative method. Direct methods are presented in all traditional
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courses of linear algebra. Generally, iterative methods are preferred for implementation on
parallel computers. For an iterative method, a significant question is whether an iterative
process will actually be successful and will lead to the solution of the algebraic equations.
An important aspect in practice is the rate of convergence. A good comparison of five
iterative linear solvers for two-dimensional radiation hydrodynamics is recently given in
[41]. One of the conclusions from the comparison is that multigrid algorithms are preferred
because of heat conduction involved in the diffusion limit. Another problem involved in
implicit schemes is the nonlinearity of equations. We don’t recommend the classical Newton
method for the nonlinearity in implicit schemes, although the Newton method converges
fast. Explicit evaluation of Jacobi coefficients in the Newton method is very expensive in
implicit schemes.

In this paper, we will develop a numerical scheme for two-dimensional radiation hy-
drodynamical equations in the transport limit. The scheme is of Godunov-type, in which
the set of time-averaged flux needed in the scheme is calculated through Riemann prob-
lems solved. The Riemann solver to be developed in this paper is based on character-
istic formulations. To resolve shocks, flow signals are explicitly treated in the scheme,
while radiation signals are implicitly treated. In this paper, an iterative approach is de-
veloped for the set of nonlinear algebraic equations arising from the implicitness of the
scheme. Compared to the iterative approach developed in [38, 39], the number of iterations
needed is reduced by more than one order. No matter how many cells radiation signals
propagate in one time step, only an extremely small number of iterations are needed in
the scheme. Toward numerical radiation hydrodynamics, this paper is the continuation of
the work reported in [40], in which radiation hydrodynamics is treated in the diffusion
limit.

The plan of this paper is as follows. In the second section radiation hydrodynamical
equations are given. In the third section we will present a procedure to find characteristic
formulations for hyperbolic systems of conservation laws including the set of radiation
hydrodynamical equations. A numerical scheme is described in the third section, which
includes an explicit treatment for flow signals, an implicit treatment for radiation signals,
an iterative approach for a set of nonlinear algebraic equations, an accelerated approach for
fast convergence, and treatment for two-dimensional problems. Numerical examples are
shown in the fourth section to demonstrate the features of the numerical scheme. The final
section is the conclusions of this paper and a brief discussion about future work toward
numerical radiation hydrodynamics.

2. BASIC EQUATIONS

Radiating fluid often contains a fraction of radiation momentum and energy. To describe
the behavior of such flows we need conservation laws that account for both gas material and
radiation contributions to the flow dynamics. In the transport limit, radiation hydrodynamical
equations [12] may be written as

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂

∂t
(ρux)+ ∂

∂x
(ρuxux + p)+ ∂

∂y
(ρuxuy) = ρ(gx + χ fx), (2)
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∂

∂t
(ρuy)+ ∂

∂x
(ρuyux)+ ∂

∂y
(ρuyuy + p) = ρ(gy + χ fy), (3)

∂

∂t

(
ρux + 1

c
fx

)
+ ∂

∂x

(
ρuxux + p+ pr + 1

c
ux fx

)
+ ∂

∂y

(
ρuxuy + 1

c
uy fx

)
= ρgx − 1

c
fx
∂ux

∂x
, (4)

∂

∂t

(
ρuy + 1

c
fy

)
+ ∂

∂x

(
ρuyux + 1

c
ux fy

)
+ ∂

∂y

(
ρuyuy + p+ pr + 1

c
uy fy

)
= ρgy − 1

c
fy
∂uy

∂y
, (5)

∂er

∂t
+∇ · [u(er + pr )+ cf ] = u · ∇ pr − cρ

(
κeer − ar κpT4

)
, (6)

∂E

∂t
+∇ · [u(E + p+ pr )+ cf ] = u · ∇ pr + χρu · f. (7)

Here,ρ, p, u, ε, andT are the mass density, gas pressure, flow velocity, specific internal
energy, and temperature of flow,er , f, and pr are the radiation energy density, radiation
flux, and radiation pressure,E is the total energy density,

E ≡ ρ
(
ε + 1

2
u2− g · r

)
+ er ,

gandar are the gravitational constant and radiation constant, andχ , κe, andκp are the radia-
tion flux coefficient, radiation energy absorption coefficient, and radiation energy emissivity.
The set of Eqs. (1)–(7) is complete if two equations of state are given, one for flow fields,
and the other for radiation fields. For the purpose of our test problems, we assume theγ -law
for flow fields, p= (γ − 1)ρε, and the Eddington factor for radiation fields,

pr = fEer .

Hereγ is the ratio of specific heats, andfE is an Eddington factor.
The termu · ∇ pr at the right-hand side of Eqs. (6), (7) is the rate of work done by the fluid

against the radiation pressure gradient. The termf · ∇u/c at the right-hand side of Eqs. (4),
(5) arises because the radiation energy flux has inertia [12]. In some applications, these two
terms,u · ∇ pr andf · ∇u/c, may be omitted.

General equations for radiation hydrodynamics are far more complicated than those given
in Eqs. (1)–(7) which are often called equations in the transport limit. In the transport limit,
interaction between radiation fields and gas material is approximately described by a few
transport coefficients. These transport coefficients describe the response of gas material to
radiation, and, in general, they are frequency dependent or they should be collected for all
the radiation frequencies involved. The frequency dependent opacityχ(ν) of gas material
is contributed from absorptionχa(ν) and scatteringχs(ν). The radiation flux coefficient is
related to the opacity through the flux mean

χ =
∫

[χa(ν)+ χs(ν)]
f (ν)

f
dν.
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Here f is the magnitude of radiation fluxf and f (ν) is monochromatic radiation flux. The
energy absorption coefficientκe is introduced through absorption mean

κe =
∫
χa(ν)

er (ν)

er
dν.

Hereer (ν) is the monochromatic radiation energy density. For grey material, the radiation
energy emissivityκp is introduced through Planck mean

κp =
∫
χa B(ν, T)

σRT4/π
dν.

Here B(ν, T) is the Planck function, andσR is the Stefan–Boltzmann constant. Thus, the
radiation coefficients are generally solution dependent. In astrophysics, self-gravitation is
often important, and therefore, the gravitation coefficientg is also solution dependent. It
is interesting to point out that equations for radiation transfer were analytically studied by
Castor [4] a long time ago, and it was found that the form of emission as described in Eq. (6)
is true only under the assumption of local thermodynamic equilibrium (LTE) between the
radiation field and the gas material. In this paper, we do not intend to deal with radiation
hydrodynamics and radiation coefficients in the general case. Instead, for the simplicity, we
treat these coefficients, including the gravitation coefficient, as constants, since the set of
Eqs. (1)–(7), or a similar set of equations, is widely used in applications. We hope that the
approach to be presented here may be useful for more general situations.

For two-dimensional problems, we will employ a dimensionally split technique. There-
fore, we write the one-dimensional projection of the above equations, which will be solved
in one-dimensional sweeps,

∂U
∂t
+ ∂F
∂x
= S. (8)

Here

U ≡



ρ

ρux

ρuy

ρux + fx/c

ρuy + fy/c
er

E


, F(U) ≡



ρux

ρu2
x + p

ρuxuy

Fm

ρuxuy + ux fy/c

uxer + c fx
ux(E + p)+ c fx


,

S(U) ≡



0
ρ(gx + χ fx)

0

ρgx − ∂ux
∂x fx/c

0

−pr
∂ux
∂x − ρ

(
κeer − ar κpT4

)
−pr

∂ux
∂x + χρux fx


,
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andFm is the flux for total momentum,

Fm ≡ ρu2
x + p+ pr + 1

c
ux fx.

3. CHARACTERISTIC FORMULATIONS

In this section, we will discuss characteristic formulations for radiation hydrodynamical
equations. The procedure to be presented here may be applied to general hyperbolic systems
of conservation laws described by Eq. (8) withn unknowns,U= (u1, u2, . . . ,un)

T and
F= ( f1, f2, . . . , fn)

T .
We write Eq. (8) in the form

∂U
∂t
+ A

∂U
∂x
= S. (9)

Here,A(U) is an× n matrix{ai j },ai j ≡ ∂ fi /∂u j , andu j and fi are thej th andi th element
of F andU. In the following,ck andL k [≡ (l1, l2, . . . , ln)] denote thekth eigenvalue of the
matrixA(U) and the associated left eigenvector, i.e.,

L kA(U) = ckL k, k = 1, 2, . . . ,n. (10)

Obviously,ck andL k both are functions ofU. Actually,ck, called a characteristic speed, is
a wave speed of the system. Multiplying Eq. (9) from the left by the eigenvectorL k, and
using Eq. (10) we have

L k

(
∂U
∂t
+ ck

∂U
∂x

)
= L kS. (11)

The equationdx/dt= ck(U) defines a curve inx− t space, which is called a characteristic
curve. Along the characteristic curve, we have

dU =
(
∂U
∂t
+ ck

∂U
∂x

)
dt. (12)

Using Eq. (11), along the characteristic curvedx/dt= ck we have

Lk(U)(dU− Sdt) = 0.

If d Rk is used to denote

d Rk ≡ Lk(U)(dU− Sdt), (13)

then along the characteristic curve,d Rk, which is normally called a differential of Riemann
invariant, remains vanishing:

d Rk = 0. (14)
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Following this procedure, for the system described by Eq. (8) we may find five char-
acteristic speeds,ux, ux ± cs, and±cr . Herecs is the sound speedcs≡

√
γ p/ρ andcr is

the radiation speedcr ≡ c
√

fE. The differentials of Riemann invariant for the characteristic
speedux are

d R0 = (dp−1p)− c2
sdρ, (15)

duy = 0, (16)

d fy = 0. (17)

Here

1p ≡ cρ
(
κeer − κpar T4

)
dt

/(
∂ε

∂p

)
ρ

.

Two differentials of Riemann invariants for two sound waves are

d Rs± = (dp−1p)± ρcs(dux −1ux). (18)

Here

1ux ≡ (gx + χ fx)dt.

These differentials of Riemann invariants are the same as those for the Euler equations
except for the effect of the source termS. Two differentials of Riemann invariants for two
radiation signals are

d Rr± = ρ
(
c2

r − c2
s

)
[c(d fx −1 fx)± cr (der −1er )]

+ [2c fx ± (er + pr )cr ][(dp−1p)± ρcr (dux −1ux)]. (19)

Here

1er ≡ −cρ
(
κeer − κpar T4

)
dt,

1 fx ≡ −cχρ fxdt.

4. NUMERICAL SCHEMES

Considering a grid{xi }, integrating Eq. (8) in a grid cellxi ≤ x≤ xi+1 and over a time
step 0≤ t ≤1t , we have

Un
i = Ui + 1t

1xi
[F(Ūi )− F(Ūi+1)] + Sh

i 1t. (20)

Here1xi is the width of the cell,1t is the time step,Ui andUn
i are two cell-averaged

values ofU at the initial time and at the new timet =1t, Ūi is a time-averaged value ofU
over the time step at the grid pointx= xi , and they are defined as, for example,

Un
i ≡

1

1xi

∫ xi+1

xi

U(1t, x) dx, Ūi ≡ 1

1t

∫ 1t

0
U(t, xi ) dt. (21)
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Sh
i in Eq. (20) is the source termS(U) evaluated atUh

i [≡ 1
2(Ui +Un

i )]. To get Eq. (20),
we have approximately used the product of cell (or time) averaged values as the cell (or
time) averaged value of a product. Therefore, one of the key points in the scheme is to
approximately calculate the time-averaged valuesŪi and the evaluation ofSh

i , which will
be discussed in the following five subsections.

The time-averaged values̄Ui needed in Eq. (20) are calculated through Riemann problems
approximately solved. A Riemann problem is an initial value problem, Eq. (8), with the
initial condition

U(0, x) =
{

UL if x < 0

UR if x > 0.
(22)

HereUL andUR are a pair of left and right states.

4.1. Explicit Treatment for Flow Signals

In order to resolve shocks, we treat flow signals explicitly. We restrict the size of time step
so that sound waves propagate no more than one grid cell. For a given pair of left and right
states, we approximately calculate the time-averaged values ofux and p at a grid point,̄ui

and p̄i , through solving the following set of two equations

p̄i − (pL +1pL)+ ρLcsL[ūxi − (uL +1ux L)] = 0, (23)

p̄i − (pR+1pR)+ ρRcs R[ūxi − (uR+1ux R)] = 0. (24)

Here the subscriptL (or R) denotes the evaluation at the left (or right) state. Equations (23),
(24) come from the property of Riemann invariants for two sound waves that along the
characteristic curvesdx/dt= ux ± cs, d Rs± = 0. To keep the difference Eq. (20) second
order accurate in time, we need the set of time-averaged flux accurate toO(1t). Since1ux

and1p, as in their definition, are already proportional to1t , we may evaluate1ux and
1p at the initial time for the use in Eqs. (23), (24). Therefore, we may explicitly find the
time-averaged values̄pi andūxi and keep the difference Eq. (20) second order accurate in
time.

Now we would like to discuss the evaluation of left and right states used in Eqs. (23), (24).
If we were working on a Lagrangian algorithm, the left (or right) state used in Eqs. (23),
(24) should be the state of the left (or right) cell to the grid point in the lowest order and
should be the averaged value on a domain of dependence in a higher order. But, since we
are working on an Eulerian algorithm, the left (or right) state to be used in Eqs. (23), (24)
is not necessarily the state in the left (or right) cell to the grid point.

Considering the Riemann problem arising at the grid pointx= xi , as an example, we
describe the calculation for the effectiveux L and pL used in Eqs. (23), (24). If(uxi−1+
csi−1)≥ 0 and(uxi + csi)≥ 0, then we consider the domain-average on the domainxi −
(uxi−1+ csi−1)1t < x≤ xi the effective left state. If(uxi−1+ csi−1)<0 and(uxi + csi)<0,
then we consider the domain-average on the domainxi < x< xi−(uxi + csi)1t the effective
left state. If(uxi−1+ csi−1)≥ 0 and(uxi + csi)<0, then we consider the domain-average
on the domainxi − (uxi−1+ csi−1)1t < x< xi − (uxi + csi)1t the effective left state. If
(uxi−1+ csi−1)<0 and(uxi + csi)≥ 0, we are in the middle of a rarefaction fan. In this case,
we consider the average of two states in the (i − 1)st andi th cells with weighting factors
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FIG. 1. An illustration for effective left and right states. (a) If(ux L + csL)≥ 0 and (ux R+ cs R)≥ 0, then
the domain-average on the domainxi − (ux L + csL)1t < x≤ xi is the effective left state. (b) If(ux L + csL)≥ 0
and (ux R+ cs R)<0, then the domain-average on the domainxi − (ux L + csL)1t < x< xi − (ux R+ cs R)1t is
the effective left state. (c) If(ux L + csL)<0 and (ux R+ cs R)<0, then the domain-average on the domain
xi < x< xi − (ux R+ cs R)1t is the effective left state. (d) If(ux L + csL)<0 and(ux R+ cs R)≥ 0, the average of the
left and right cell-averages with weighting factors(ux R+ cs R) and−(ux L + csL) is the left state.

(uxi + csi) and−(uxi−1+ csi−1) the effective left state. This calculation is illustrated in
Fig. 1. The effective right state may be similarly calculated based on the signs of (ux − cs)
on the two adjacent cells.

From Eqs. (15)–(17), we may also explicitly find the time-averaged values ofρ, uy, and
fy at the grid point, ¯ρ i , ūyi , and f̄ yi , through the three equations

p̄i −
(

p0
i +1p

)− c2
s

(
ρ̄ i − ρ0

i

) = 0, (25)

ūy = u0
yi , (26)

f̄ y = f 0
yi . (27)

Here, the superscript 0 denotes the domain-average over the domain betweenxi and
(xi + ūxi1t). As 1p and1ux used in Eqs. (23), (24), we explicitly evaluate1p used
in Eq. (25).

For the calculation of domain-averages, for example, of gas pressurep, interpolations
are needed to determine the structure ofp inside each grid cell. Although more sophisti-
cated interpolations may be used, we use a linear interpolation in this paper for the cell
structure. Therefore, the values ofp at the grid pointsx= xi andx= xi+1, pil andpir , are
pi − ki1xi /2 andpi + ki1xi /2. Here the slopeki is determined by(pi+1− pi−1)/(1xi−1/2
+1xi +1xi+1/2). After we obtain the values at grid points, the monotonicity constraint
originally suggested by van Leer [6] is applied to these values at grid points, i.e., no values
interpolated within a cell shall lie outside the range defined by the cell-average for this cell
and its two neighbors. Therefore, after the monotonicity applied, the cell structure will be

pi (x) = pi + Ki [x − (xi +1xi /2)]/1xi ,

and

Ki = s ∗min[2 ∗max(s ∗1pi , 0), 2 ∗max(s ∗1pi−1, 0), s ∗ (pir − pil )].

Here

s≡ sign(pir − pil ), 1pi ≡ pi+1− pi .
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Through this explicit treatment for flow signals, we may obtain the time-averaged values
ρ̄ i , p̄i , ūxi , ūyi , and f̄ yi . Using these time-averaged values, we explicitly updateρi , uyi and
fyi to getρn

i , u
n
yi , and f n

yi .

4.2. Implicit Treatment for Radiative Signals

In this subsection, we will discuss the implicit calculation of the time-averaged values of
fx ander at grid points, which are needed in Eq. (20). For the convenience of our discussion,
we write Eq. (20) here again

ρn
i un

xi − ρi uxi + 1t

1xi

[
ρ̄ i+1ū2

xi+1+ p̄i+1− ρ̄ i u
2
xi − p̄i

]
− ρn

i

(
gx + χ f n

xi

)
1t = 0, (28)

ρn
i un

xi − ρi uxi + 1

c
δ f n

xi +
1t

1xi
(F̄mi+1− F̄mi)

+ 1t

c1xi
(ūxi+1− ūxi ) f n

xi −1tgxρ
n
i = 0, (29)

δen
ri +

1t

1xi
[ūxi+1ēr i+1+ c f̄ xi+1− ūxi ēr i − c f̄ xi ] + pn

ri

1t

1xi
(ūxi+1− ūxi )

−1tcρn
i

[
κee

n
ri − κpar

(
Tn

i

)4] = 0, (30)

δEn
i +

1t

1xi
[ūxi (Ēi + p̄i )+ c f̄ xi ] + 1t

1xi
pn

ri (ūxi+1− ūxi )

−χ1tρn
i un

xi f n
xi = 0. (31)

Hereδen
ri ≡ en

ri − eri , andδEn
i ≡ En

i − Ei . In Eqs. (28)–(31), we have evaluated the source
terms att =1t , which will make Eqs. (28)–(31) only first order accurate in time. As
we will show in this subsection, we use Eqs. (28)–(31) only for two sets of values. One
is the set of time-averaged flux, which is needed in Eq. (20) and has to be only first order
accurate to keep Eq. (20) second order accurate in time. The other set of values is the first
order accurateUn

i , which will be used in the evaluation of the source termSh
i in Eq. (20)

Sh
i = S

[
1

2

(
Ui + Un

i

)]
.

Although these two sets of values are first order accurate, after we plug these two sets of
values into Eq. (20) the updated valuesUn

i are second order accurate. Thus the numerical
scheme being described in this paper actually has two steps, predictor and corrector. In
the predictor step, we find first order accurate (in time) flux and cell-averagesUn

i . In the
corrector step we put the first order accurate solution,F(Ūi ) andUn

i , back into Eq. (20) to
updateUi .

In the time scale of flow motion, a time step1t is so large thatcr1t/1xi is much larger
than unity. Therefore, we use the backward Euler formulation forēr i and f̄ xi ,

ēr i ≈ eln
ri , f̄ xi ≈ f ln

xi . (32)

Hereeln
ri ≡ er (1t, xi ), f ln

xi ≡ fx(1t, xi ), and the superscriptln stands for “left edge at the
new time.”

As shown in Fig. 2, the values off ln
xi andeln

ri may be approximately calculated through
tracing two radiation characteristic curves, which pass through the point (xi ,1t), back to
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FIG. 2. The values ofeln
ri and f ln

xi are calculated through tracing two characteristic curves back to the centers
of two neighboring cells.

the centers of two neighboring cells. From Eq. (19) we have

ai−1
{

c
[

f ln
xi − fx

(
τi−11t, xm

i−1

)−1 fxi−1
]+ cr

[
eln

ri − er
(
τi−11t, xm

i−1

)−1eri−1
]}

+ b+i−1

{
p̄i − p

(
τi−11t, xm

i−1

)−1pi−1

+ crρi−1
[
ūxi − ux

(
τi−11t, xm

i−1

)−1uxi−1
]} = 0, (33)

ai {c
[

f ln
xi − fx

(
τi1t, xm

i

)−1 fxi
]− cr

[
eln

ri − er
(
τi1t, xm

i

)−1eri
]}

+ b−i
{

p̄i − p
(
τi1t, xm

i

)−1pi + crρi
[
ūxi − ux

(
τi1t, xm

i

)−1uxi
]} = 0. (34)

Here,xm
i is the center of a cell andτi1t is the time at the intersection between the line

x= xm
i and the characteristic curve passing through the point (xi ,1t), a and b are the

coefficients of differentials of Riemann invariants Eq. (19), and they are

a ≡ ρ(c2
r − c2

s

)
, b± ≡ 2c fx ± cr (er + pr ).

It is easy to find that

τi = 1− 1xi

2cr1t
.

As stated before, to keepeln
ri and f ln

xi first order accurate,1pi ,1uxi ,1eri , and1 fxi in
Eqs. (33), (34) may be explicitly evaluated at the initial time. The value of a variable, for
example,fx, at(τi1t, xm

i ) in Eqs. (33), (34) is approximately calculated from cell-averages
fxi and f n

xi through a linear interpolation in time,

fx
(
τi1t, xm

i

) = fxi + τi δ f n
xi .

Solving Eqs. (33), (34) foreln
ri and f ln

xi , we may writeeln
ri and f ln

xi in terms ofUn
i :

eln
ri = e0

r i +
1

2
τi

[
δen

ri −
c

cr
δ f n

xi −
1

cr
ηi δp

n
i + ρi ηi δu

n
xi

]
+ 1

2
τi−1

[
δen

ri−1+
c

cr
δ f n

xi−1+
1

cr
ζi−1δp

n
i−1+ ρi−1ζi−1δu

n
xi−1

]
, (35)
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f ln
xi = f 0

xi +
1

2c
τi
[
cδ f n

xi − cr δe
n
ri + ηi δp

n
i − cr ηiρi δu

n
xi

]
+ 1

2c
τi−1

[
cδ f n

xi−1+ cr δe
n
ri−1+ ζi−1δp

n
i−1+ cr ζi−1ρi−1δu

n
xi−1

]
. (36)

Here

e0
r i ≡

1

2
(eri +1eri + eri−1+1eri−1)− c

2cr
( fxi +1 fxi − fxi−1−1 fxi−1)

+ 1

2cr
ηi [ p̄i − pi −1pi − crρi (ūxi − uxi −1uxi )]

− 1

2cr
ζi−1[ p̄i − pi−1−1pi−1+ crρi−1(ūxi − uxi−1−1uxi−1)], (37)

f 0
xi ≡

1

2

[
fxi +1 fxi + fxi−1+1 fxi−1− cr

c
(eri +1eri − eri−1−1eri−1)

]
− 1

2c
ηi [ p̄i − pi −1pi − crρi (ūxi − uxi −1uxi )]

− 1

2c
ζi−1[ p̄i − pi−1−1pi−1+ crρi−1(ūxi − uxi−1−1uxi−1)]. (38)

η ≡ 2c fx − cr (er + pr )

ρ
(
c2

r − c2
s

) , ζ ≡ 2c fx + cr (er + pr )

ρ
(
c2

r − c2
s

) .

The coefficients in Eqs. (35)–(38) depend onρ, p, er , and fx. To keepeln
ri and f ln

xi first
order accurate, we may evaluate the coefficients at eithert = 0 or t =1t . In our code, for
the coefficients we use the initial values ofρ andp, and the values att =1t for er and fx.

If we insert Eqs. (35), (36) into Eqs. (28)–(31), we will get a set of nonlinear algebraic
equations for a set of cell-averaged values,pn

i , u
n
xi , e

n
ri , and f n

xi . Since we have used the
backward Euler formulation for radiation signals, the numerical errors in radiation signals
undergo a quick damping in the time scale of flow motion.

4.3. Iterative Approach

Equations (28)–(31), (35), (36) may be iteratively solved. We insert Eqs. (35), (36) into
Eqs. (28)–(31) and get a set of nonlinear algebraic equations for cell-averagespn

i , u
n
xi , e

n
ri ,

and f n
xi . To treat the nonlinearity of the resulting equations, we write the product of two

unknowns, for example,un
xi and f n

xi , as

un
xi f n

xi = un
xiδ f n

xi + fxiδu
n
xi + uxi fxi .

Similarly, (
Tn

i

)4 = [(Tn
i + Ti

)
δTn

i + T2
i

]2
.

After some straightforward manipulations, we may write the set of algebraic equations in
the form

Qi δVn
i = Pi δVn

i+1+M i δVn
i−1+ Ci . (39)
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HereVn
i is a vector for unknowns,

Vn
i ≡


pn

i

un
xi

en
ri

f n
xi

 ,

δVn
i ≡Vn

i −V i ,Qi ,Pi , andM i are three matrices which depend on unknownsVn
i , andCi

is a vector which is independent of unknownsVn
i . The set of Eq. (39) is what we want to

solve, which is nonlinear. For the nonlinearity we have not introduced any approximation,
such as any linearizing procedure, in Eq. (39). Therefore, our treatment for the nonlinearity
is completely nonlinear.

The set of Eq. (39) may be iteratively solved, for example, through a red–black approach,
or Gauss–Seidel method. In a red–black approach, numerical cells are divided into two
sets,{i = 2 j + 1; j = 1, 2, . . .}, and{i = 2 j ; j = 1, 2, . . .}, which are called red and black
sets. For each iteration, we solve Eq. (39) for the red set first with the black set fixed,
and then solve Eq. (39) for the black set with the red set fixed. Therefore, information
propagates two grid cells for each iteration in both directions in the red–black approach. In
the Gauss–Seidel method,δVn

i is evaluated through most recent values forVn
i+1 andVn

i−1.
We would like to mention that for the set of Eq. (39) the convergence of the Gauss–Seidel
method is slower than the red-black approach. But, if a sweeping mechanism is added to
the Gauss–Seidel method, the resulting sweeping method converges much more fast than
the red-black approach. The sweeping mechanism we used in this paper is the following
[35]. In the first iteration, we solve Eq. (39) fori = 1 first, then fori = 2, and so on, until for
i = N. In the next iteration, Eq. (39) is solved fori from i = N to i = 1, as shown in Fig. 3
in which the arrows indicate the orders solving Eq. (39) for differenti in each iteration. We
would like to mention that the matricesQi , Pi , andM i in Eq. (39) have to be adapted to
the new solution values after each iteration, but they do not have to be adapted to the new
solution values until a complete iteration is finished.

To show the convergence, we initially set up a sound wave and a radiation wave,

d R0

dx
= 0,

d Rs−
dx
= 0,

d Rr−
dx
= 0,

d Rs+
dx
= 0.01 sin(2πx),

d Rr+
dx
= 0.01 sin(2πx).

The initial profiles for physical variables are obtained through solving this set of ordinary
differential equations forρ, p, ux, er , and fx. The sound speed is about unity and the speed
of radiation signals is 104. We turn off all the radiation coefficients in this example. When the
time step1t = 5× 10−5 is used, the Courant number for radiation signalscr1t/1x is about

FIG. 3. An illustration for the sweeping method. The arrows indicate the orders to implement Eq. (39) in each
cell.



212 DAI AND WOODWARD

FIG. 4. The initial condition (dashed lines) and the solution after one time step1t (solid lines).1tcr /1x is
128.

128. Here1x= 1/256. The dashed and solid lines in Fig. 4 show the initial profiles and
profiles after one time step, respectively. Figure 5 shows the convergence for the red–black
approach and sweeping method. The error1 in Fig. 5 is the maximum of the discrepancy
between the left-hand and right-hand sides of Eqs. (28)–(31) for all grid cells.

As stated before, the scheme presented in this paper is not designed to resolve the time
scale of radiation signals. We are interested only in the time scale of flow motion. Therefore,

FIG. 5. The convergence obtained from red–black (dashed line) and the sweeping method (solid line) when
1tcr /1x is about 128.
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FIG. 6. The initial condition (dashed lines) and the solution after one time step1t (solid lines).1tcr /1x is
17,920.

for the problem described above, the size of time step may be much larger. We increase the
time step to1t = 7× 10−3 for the problem above, so that the Courant number for radiation
signals is about 1.792× 104 and the Courant number for the sound wavecs1t/1x is about
0.84. The solid lines in Fig. 6 show the profiles after one time step, and Fig. 7 shows the
convergence of the sweeping method.

4.4. Acceleration of Convergence

From numerical experiments, we noticed that the sweeping method converges extremely
fast for those problems with known boundary values,Vn

0 andVn
N+1, compared to other

problems. Suppose we have a problem in which the initial condition is the same as that just
described above, but values at boundaries are fixed. If a grid withN= 256 grid points and
a time step1t = 7× 10−3 are used for the problem, we will get the convergence shown in
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FIG. 7. The convergence obtained from the sweeping method when1tcr /1x is about 17,920.

Fig. 8, in which the dashed line is obtained from the red–black approach and the solid line
is obtained from the sweeping method.

From the phenomena shown in Fig. 8, we have developed an iterative approach for general
boundary conditions, which converges much more fast than the sweeping method. Suppose
we have a problem with boundary conditions written in general forms

Hj
(
Vn

0,V
n
N+1,V

n
1,V

n
N

) = 0, j = 1, 2, . . . ,8. (40)

FIG. 8. The convergence obtained from the red–black approach (dashed line) and the sweeping method (solid
line) for a problem with values at two fake cells are fixed when1tcr /1x is 17,920.
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HereVn
0 andVn

N+1 are the values on two fake cells at two boundaries. Our iterative approach
is listed below:

(1) Obtain the valuesV0 andVN+1 through the boundary conditions, Eq. (40), from
initial valuesV i , i = 1, 2, . . . , N.

(2) Guess the values ofVn
0 andVn

N+1 asV0 andVN+1, respectively.
(3) Iteratively solve Eq. (39) forVn

i (i = 1, 2, . . . , N) to a required accuracy, but keep
Vn

0 andVn
N+1 fixed during the iteration.

(4) From Eq. (39), find Jacobi coefficients∂Vn
1/∂Vn

0, ∂Vn
1/∂Vn

N+1, ∂Vn
N/∂Vn

0, and
∂Vn

N/∂Vn
N+1.

(5) From the boundary conditions, Eq. (40), and the values∂Vn
1/∂Vn

0 and∂Vn
N/∂Vn

N+1,
find corrections,1Vn

0 and1Vn
N+1, of the initial guess.

(6) Modify the values ofVn
0 andVn

N+1, Vn
0=Vn

0+1Vn
0,V

n
N+1=Vn

N+1+1Vn
N+1, and

go back to the step (3).

We explain the steps listed above in more detail here. In step (2), we guess only eight
values sinceVn

0 andVn
N+1 are vectors with four elements. In step (3) we iteratively solve

Eq. (39) forVn
i (i = 1, 2, . . . , N) as described in the last subsection. It should be emphasized

that during the iteration, the values ofVn
0 andVn

N+1 are fixed. Therefore, in this step, we
need only a few iterations if we use the sweeping method. After this step the solutions for
Vn

i (i = 0, 1, 2, . . . , N) do not necessarily satisfy the the boundary conditions, Eq. (40). If
the boundary conditions are satisfied, then we get the solutions. Otherwise, we have to go
to the next step. As a result of step (3), the values ofVn

1 andVn
N depend onVn

0 andVn
N+1.

We may adjust the values ofVn
0 andVn

N+1 so that Eq. (40) holds. Therefore, we may use
the set of Eq. (40) to find a correction,1Vn

0 and1Vn
N+1, of the initial guessVn

0 andVn
N+1.

The corrections are the solutions of the following set of eight equations

Hj

(
Vn

0 +1Vn
0,V

n
N+1+ Vn

N+1, Vn
1 +

∂Vn
1

∂Vn
0
1Vn

0 +
∂Vn

1

∂Vn
N+1

1Vn
N+1,

Vn
N +

∂Vn
N

∂Vn
0
1Vn

0 +
∂Vn

N

∂Vn
N+1

1Vn
N+1

)
= 0, j = 1, 2, . . . ,8. (41)

In Eq. (41),Vn
1 andVn

N are the solutions of step (3). The Jacobi coefficients,∂Vn
1/∂Vn

0,

∂Vn
1/∂Vn

N+1, ∂Vn
N/∂Vn

0, and∂Vn
N/∂Vn

N+1, represent the dependence of the solutions,Vn
1

andVn
N , on the initial guessVn

0 andVn
N+1. The Jacobi coefficients may be obtained from

Eq. (39). In order to find the Jacobi coefficients, we take the derivative of Eq. (39) with
respect tovn, which is any one of elements inVn

0 andVn
N+1. Thus we have

Q̂i V̂n
i = P̂i V̂n

i+1+ M̂ i V̂n
i−1. (42)

Here

V̂n
i ≡

∂Vn
i

∂vn
.

SinceQi , Pi , andM i in Eq. (39) are not constant, the matricesQ̂i , P̂i , andM̂ i depend on the
unknownsV̂n

i as well asVn
i . Like Eq. (39), the system described by Eq. (42) is nonlinear too.

Exactly like Eq. (39), Eq. (42) may be iteratively solved. When we iteratively solve
Eq. (42), theVn

i are kept constant which are the solutions obtained in step (3). The boundary
values,V̂n

0 andV̂n
N+1, in Eq. (42) are fixed. For example, ifvn is pn

0, the boundary condition
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used for Eq. (42) is

V̂n
0 =


1
0
0
0


and

V̂n
N+1 = 0.

Therefore, only a few of iterations are needed for Eq. (42) if the sweeping method is used.
Since there are eight elements inVn

0 andVn
N+1, we have to solve Eq. (42) eight times,

and each for one of the elements. After finding the Jacobi coefficients, we can find the
corrections through solving Eq. (41).

The approach presented here is for general boundary conditions, Eq. (40). For typical
boundary conditions used in applications, such as periodic boundary conditions, reflection
boundary conditions, flow-in and flow-out boundary conditions, the forms of Eqs. (40), (41)
are very simple. For example, for periodic boundary conditions, the form of Eq. (40) is

Vn
1 = Vn

N+1,

Vn
N = Vn

0,

and the form of Eq. (41) is

Vn
1 +

∑
v

∂Vn
1

∂vn
1vn = Vn

N+1+1Vn
N+1,

Vn
N +

∑
v

∂Vn
N

∂vn
1vn = Vn

0 +1Vn
0.

Together with the sweeping method, we call the approach the accelerated approach.
Applying this accelerated approach to the wave described before withN (= 256) grid cells
and the time step1t = 7× 10−3, we obtain the convergence shown in Fig. 9. The horizontal
coordinate in the figure is the number of iterations used for iteratively solving Eq. (39). As
stated before, for each of eight Jacobi coefficients, we also iteratively solve Eq. (42). For
each point on a curve shown in Fig. 9, Eq. (42) is solved only once for each element ofVn

0

andVn
N+1, i.e., step (4) described above is implemented only once. For example, for the

number of iterations 10, we use 5 iterations solving Eq. (39) before step (4), and we use
another set of 5 iterations solving Eq. (39) after the valuesVn

0 andVn
N+1 are corrected once.

In Fig. 10 we show the convergence vs the total number of iterations used for both Eq. (39)
and Eq. (42) for all eight Jacobi coefficients.

The accelerated approach proposed above significantly reduces the cost of simulations.
Compared to the approach shown in Fig. 7, for a given required accuracy, the accelerated
approach shown in Fig. 10 reduces the number of iterations needed by more than one order.
In our numerical examples to be shown, only less than 40 total iterations are needed in
each time step, no matter how many cells radiation signals propagate in one time step. To
measure the cost of each iteration, we run our code 1000 time steps, and in each time step,
we allow 40 iterations. The total cost of this run is 36.1 s. We run the same code 1000 time
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FIG. 9. The convergence obtained from the accelerated red–black (dashed line) and accelerated sweeping
method (solid line) when1tcr /1x is about 17,920. The horizontal coordinate is the number of iterations used for
Eq. (39).

steps again, but in each time step, we allow 50 iterations. The total cost of the second run
is 38.3. From these numbers it is easy to find that each iteration costs 2.2× 10−4 s and
the each time step without any iteration costs 2.73× 10−2 s. Therefore, each iteration costs
only 0.8 percent of the CPU time which is used for a fully explicit scheme which is second
order accurate both in space and time.

FIG. 10. The convergence obtained from the accelerated red–black (dashed line) and accelerated sweeping
method (solid line) when1tcr /1x is about 17,920. The horizontal coordinate is the total number of iterations
used for both Eq. (39) and Eq. (42) for all eight Jacobi coefficients.



218 DAI AND WOODWARD

4.5. Consideration for Multi-dimensions

The implicit treatment for radiation signals and the iterative approach described above
may be directly applied to two-dimensional radiation hydrodynamical Eqs. (1)–(7). In this
paper, we apply the dimensionally split technique originally proposed by Strang [3] for ex-
plicit schemes to our implicit–explicit hybrid calculation. The method for two-dimensional
equations is the symmetric product of one-dimensional operators:

L1t = 1

2

(
L x
1tL

y
1t + L y

1tL
x
1t

)
. (43)

HereL x
1t is a one-dimensional operator with time step1t for one-dimensional Eq. (8).

For a linear hyperbolic model problem,

∂F

∂t
= A

∂F

∂x
+ B

∂F

∂y
,

where coefficientsA andB are symmetric matrices and constant. Following the procedure
provided in [3] it is easy to show that the operatorL1t is second-order accurate if each one-
dimensional operator is. For any smooth functionU (x, y, t), the second order accuracy
requires that

L1tU =U +1t

(
A
∂U

∂x
+ B

∂U

∂y

)
+ 1

2
1t2

[
A2∂

2U

∂x2
+ (AB+ B A)

∂2U

∂x∂y
+ B2∂

2U

∂y2

]
+O(1t3). (44)

Since each one-dimensional operator is second order accurate, i.e.,

L x
1tU = U +1t A

∂U

∂x
+ 1

2
1t2A2∂

2U

∂x2
,

L y
1tU = U +1t B

∂U

∂y
+ 1

2
1t2B2∂

2U

∂y2
.

Applying the operatorL1t defined in Eq. (43) on a smooth functionU (x, y, t), and using
the two equations above, we may find that Eq. (44) is valid. Therefore, each time step for a
two-dimensional problem is divided into four one-dimensional sweeps.

In this paper, we will use the approach Eq. (43) for two-dimensional radiation hydrody-
namical Eqs. (1)–(7). The one-dimensional operatorL x

1t is the solver described before for
one-dimensional Eq. (8). The size of time step is limited by the maximum value of wave
speeds|ux ± cs| and|uy± cs| involved in all four one-dimensional operations in the whole
simulation domain. The accelerated approach may be applied to the two-dimensional situ-
ation. The way we use in this paper is very straightforward. For example, theK iterations
for a two-dimensional problem are achieved throughK iterations carried out in each of four
one-dimensional sweeps in Eq. (43).

5. NUMERICAL EXAMPLES

The numerical scheme described in this paper has been tested for some problems for the
correctness and robustness, a few of which are presented here to illustrate the features of the
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FIG. 11. The numerical solution for the case of the Euler equations. The dashed lines are initial conditions,
dotted lines are the solution att = 1.0 and the solid lines are the solution att = 2.0.

FIG. 12. The numerical solution for the case of radiation hydrodynamics withcκe= 0.01. The dashed lines
are initial conditions, and the solid lines are the solution att = 1 andt = 2. The dotted lines, which are hidden
behind solid lines, are obtained from a fully explicit scheme.
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scheme. In all the examples,γ and fE are set to 5/3 and 1, respectively. Unless specified
otherwise, the size of time step is such chosen that the Courant number for sound waves
is about 0.8. In each numerical example, we use the accelerated approach, and a required
accuracy used in step (3) in Subsection 4.4 is chosen to be 10−7.

The first set of four simulations is for the propagation of smooth waves. Initially we set
up a sound wave and a radiation wave throughd Rs+ andd Rr+. The sound wave speed is
about unity, andc is set to 2000. In the first run,er , fx, and radiation coefficients are all set
to zero. The dashed lines in Fig. 11 are the initial profiles, and the dotted and solid lines in
Fig. 11 show the profiles att = 1.0 andt = 2.0, respectively. The smooth wave becomes a
shock when propagating. In the second run, we setcκe equal to 0.01 and the initial profiles
are shown through the dashed lines in Fig. 12. The solid lines in Fig. 12 show the profiles
at t = 1.0 andt = 2.0. It is interesting to compare the results with those obtained from a
fully explicit and second order accurate scheme in which the size of time step is limited
by the radiation speed. The dotted lines in Fig. 12, which are almost hidden behind solid
lines forρ, p, andu, are obtained from the fully explicit scheme. There are little differences
in flow fields between the two sets of solution. The third run is for a flow with a finite
emissivityκp. The initial profiles are shown through dashed lines in Fig. 13.cκpar is set to
0.05. The solid lines in Fig. 13 show the profiles att = 1.0 andt = 2.0. The internal energy
of flow decreases while the radiation energy increases with time. In Fig. 13 we also give

FIG. 13. The numerical solution for the case of radiation hydrodynamics withcar κp= 0.05. The dashed lines
are initial conditions, and the solid lines are the solution att = 1 andt = 2. The dotted lines, which are hidden
behind solid lines, are obtained from a fully explicit scheme.



RADIATION HYDRODYNAMICS 221

FIG. 14. The numerical solution for the case of radiation hydrodynamicsχ = 0.2. The dashed lines are initial
conditions, and the solid lines are the solution att = 1 andt = 2. The dotted lines, which are hidden behind solid
lines, are obtained from a fully explicit scheme.

the numerical solution (dotted lines) obtained from the fully explicit scheme. It is hard to
see differences in flow fields between the two sets of solution. The fourth run is to show the
acceleration due to the radiation flux. The initial profiles are shown in Fig. 14 through the
dashed lines. The momentum absorption coefficientχ is set to 0.2. The solid lines in Fig. 14
show the profiles att = 1.0 andt = 2.0. The flow is accelerated through the radiation flux.
In Fig. 14 we also give the numerical solution (dotted lines) obtained from the fully explicit
scheme.

Next, we would like to demonstrate the accuracy of the scheme. Initially, we set up two
waves throughd Rs+ andd Rr+, which are shown by the dashed lines in Fig. 15. The sound
speed is about unity. The light speedc is set to 5000, andcκpar is equal to 0.01. We run
the problem using six grids with 256, 128, 64, 32, 16, and 8 grid points. The solid lines in
Fig. 15 show six sets of solution att = 10 obtained from these six grids. It is hard to see
differences in the results for the three grids with 64, 128, and 256 grid points. To show the
correctness of the solution, in Fig. 16 we plot the numerical solution (solid lines) with 256
grid points against a solution obtained from a fully explicit scheme (dotted lines completely
hidden behind the solid lines).

The next set of examples involve Mach 3 shocks. We first test the case of the Euler
equations. In Fig. 17, the dashed lines in the plots forρ, p, u, andε are the initial profiles,
and the dotted lines are the numerical solution att = 0.15 for the Euler equations. For
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FIG. 15. The numerical solution after a sound wave propagates about ten wavelengths. The dashed lines are
initial profiles, and the solid lines are the solution obtained from six simulations which have the different numbers
of grid points. The six grids have 8, 16, 32, 64, 128, and 256 grid points. The three sets of solution obtained from
three grids with 64, 128, and 256 grid points are almost identical.

radiation hydrodynamical equations, we add radiation energy and flux in this problem, as
shown by the dashed lines in the plot forer and fx. We setcκpar equal to 0.05 and the
light speedcequal to 5000. The numerical solution att = 0.15 for radiation hydrodynamical
equations is shown by the solid lines in Fig. 17. A direct effect of the finiteκp in this problem
is the increase of the radiation energyer and the decrease of the internal energyρε. The
flow velocity and radiation flux are also changed. To compare the numerical solution with
those obtained from the fully explicit scheme, in Fig. 18 we give the two sets of solution
against each other. The dotted lines, which are completely hidden behind the solid lines,
are the solution obtained from the fully explicit scheme.

The final one-dimensional example is a Mach 10 shock impacting on a denser region.
The sound speed in the pre-shock state is unity. The gas in the denser region is 100 times
denser than that in the pre-shock state. The dashed lines in Fig. 19 show the initial profiles.
The solid lines in the figure are the solution of the Euler equations att = 0.05. For radiation
hydrodynamics, the light speedc is set to 105, and we let radiation fields get into the
simulation domain through the left boundary, i.e., we set (er , fx) to (10, 0.1) atx= 0 as a
boundary condition.cκe is set to 25, andκp andχ are set to zero. The solid lines in Fig. 20
are the solution att = 0.05.
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FIG. 16. The numerical solution after a sound wave propagates about ten wavelengths. Dashed lines are initial
profiles, the solid lines are obtained from the implicit-explicit scheme, and the dotted lines, which are completely
hidden behind the solid lines and can’t be seen, are obtained from a fully explicit scheme.

The remaining examples are for the two-dimensional situation. The first two two-
dimensional simulations are carried on a two-dimensional domain (Lx − 0)× (L y− 0),
whereLx ≡ 1/ cosα, L y≡ 1/ sinα, andα= 300, periodic boundaries conditions are used
in both x- and y-directions, and the simulations are about waves propagating at the direction
which is atα degree with respect to the x-axis.

The first two-dimensional example is to show the convergence in the numerical solution
for smooth flow. Initially, we set up a sound wave with about unity wave speed and a radia-
tion wave withc equal 103 propagating at theα-direction. The dashed lines in Fig. 21 show
the initial profiles along the liney= L y/2. The solid lines in Fig. 21 show the numerical
solution after the sound wave propagates ten wavelengths, which are obtained from five
simulations through five grids with 82, 162, 322, 642, and 1282 grid points. The differences
between the two sets of solution of 642 and 1282 are difficult to be noticed. To demonstrate
the correctness of the converged solution of flow motion, in Fig. 22 we plot the numerical
solution (solid lines) against the solution obtained from the fully explicit one-dimensional
scheme (dotted lines). There are no differences in flow motion between two sets of solution,
although they are obviously different in radiation fields.

The second example is about the steepening of a sound wave in a two-dimensional domain.
Initially a sound wave and a radiation wave are set up propagating along theα-direction.
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FIG. 17. The numerical solution for the propagation of a Mach 3 shock att = 0.15. Dashed lines are initial
profiles. The dotted lines are the results for the case of the Euler equations in which radiation quantities are all
zero. The solid lines are the results for radiation hydrodynamical equations in whichcar κp= 0.01.

The sound wave speed is about unity,c= 2× 103 andcar κp= 0.02. A grid with 1282 points
is used in the simulation domain. The dashed lines in Fig. 23 show the initial profiles along
the liney= L y/2, and the solid lines in Fig. 23 are the numerical solution after the sound
wave propagates one and two wavelengths. For a comparison, in Fig. 23 we also give the
solution (dotted lines) obtained from the fully explicit one-dimensional scheme, which are
hidden behind the solid lines.

The next example is interaction between a Mach 10 shock and a denser cloud. A circular
cloud is initially located in front of a Mach 10 shock, and the cloud is 103 times denser than
the pre-shock state. The sound wave speed in the pre-shock state is unity and the light speed
c is set to 105. The radiation coefficientsχ andκp are set to zero, andcκe is set to 2.5. The
simulation is carried on a 20× 10 domain. Initially radiation fieldser , fx, and fy are zero
in the simulation domain. As a boundary condition at the left side, we set constant values
for (ρ, p, ux, er , fx, fy), (ρ, p, ux) take the values at the post-shock state, and (er, fx, fy)
take (10, 104, 0). An open boundary condition is used at other three sides of the simulation
domain. The simulation is carried out with a grid resolution 1024× 512. The upper image
in Fig. 24 displays the temperature at one instant. As a comparison, in the lower image of
Fig. 24, we also give the solution of the Euler equations at the same instant. As shown in
the figure, the flow is heated through absorbing radiation energy. We have to point out that
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FIG. 18. The numerical solution (solid lines) att = 0.15 are plotted against the solution obtained from a fully
explicit scheme (dotted lines completely hidden behind the solid lines). Dashed lines are initial profiles.

FIG. 19. The numerical solution for the case of the Euler equations for a Mach 10 shock interacting with a
denser region. The dashed lines are initial profiles, and the solid lines are the solution att = 0.05.
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FIG. 20. The numerical solution for the case of radiation hydrodynamics withcκe= 25. Dashed lines are
initial profiles, solid lines are the solution att = 0.05, and dotted lines, which are completely hidden behind the
solid lines, are obtained from a fully explicit scheme. Constant values (10, 0.1) are assigned to the radiation fields
(er , fx) at the left boundary as a boundary condition.

we actually simulated a half of the domain, and the other half is duplicated according to the
symmetry of the problem.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a numerical scheme for two-dimensional radiation hydro-
dynamical equations in the transport limit. The scheme is of Godunov-type, in which the set
of time-averaged flux is calculated through Riemann problems solved. In the scheme, flow
signals are explicitly treated, while radiation signals are implicitly treated. Flow fields and
radiation fields are updated simultaneously in the scheme. Numerical errors for radiation
signals undergo strong damping in the scale of flow motion. The set of nonlinear algebraic
equations arising from the implicitness of the scheme is iteratively solved, and the treatment
is completely nonlinear. The sweeping method used in the scheme significantly reduces the
number of iterations or computer CPU time needed. The accelerated approach proposed
in this paper further reduces the number of iterations needed by more than one order. No
mater how many cells radiation signals propagate in one time step, only an extremely small
number of iterations are needed. Each iteration costs only 0.8 percent of the CPU time
which is spent for one time step of a second order accurate and fully explicit scheme. From
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FIG. 21. Five sets of numerical solution for waves obliquely propagating in a two-dimensional domain, which
are obtained through 82, 162, 322, 642, and 1282 grid points. The dashed lines are initial conditions, and the solid
lines are the solution after a sound wave propagates ten wavelengths. It is hard to see differences among the two
sets of solution obtained through 642 and 1282 grid points.

numerical examples, it is shown that the proposed scheme keeps the principle advantages of
Godunov schemes for flow motion. In the time scale of flow motion, the numerical solution
obtained from the implicit–explicit scheme is the same as that obtained from a fully explicit
scheme which is second order accurate in both space and time.

The accelerated approach presented in this paper may be applied to other multi-coloring
besides the red–black approach and may be applied to other hyperbolic systems of con-
servation laws, such as Euler equations and magnetohydrodynamical equations. We have
applied the accelerated approach to the multi-coloring presented in [39], and the number of
iterations needed in [39] is dramatically reduced.
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FIG. 22. A comparison in numerical solution between our two-dimensional implicit–explicit hybrid scheme
(solid lines) and a fully explicit and one-dimensional scheme (dotted lines completely hidden behind the solid
lines). The dashed lines are the initial profiles along the liney= L y/2, and solid lines the solution after the sound
wave propagates ten wavelengths.

The rate of convergence of the scheme will be influenced by the values of transport
coefficients, since the source terms in Eqs. (1)–(7) are implicitly treated in the scheme. As
an example, Fig. 25 shows the number of iterations needed vs the momentum absorption
coefficientχ for a fixed tolerance. Hereκp andκe are set to zero and the Courant number
for radiation signals is 6.4× 103.

In this paper, we have used a dimensionally split approach for two-dimensional problems.
Compared to unsplit Godunov schemes, a dimensionally split approach is much cheaper
in both CPU time and memory requirements. But it needs further investigation whether or
not one can generally apply a split approach in implicit calculations although information
may travel diagonally in a split approach. The split approach used in this paper is only the
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FIG. 23. A sound wave and a radiation wave obliquely propagate in a two-dimensional domain. Dashed
lines are initial profiles along the liney= Ly/2, and two sets of solid lines are the solution after the sound wave
propagates one and two wavelengths. The dotted lines hidden behind the solid lines are the solution obtained from
a fully explicit one-dimensional scheme.

first step for multi-dimensional problems in radiation hydrodynamics. In this paper we have
used the split approach Eq. (43). Compared to a typical split approach widely used for the
Euler equations,

L21t = L x
1tL

y
1tL

y
1tL

x
1t , (45)

Eq. (43) doubled the cost. It is not clear whether Eq. (45), together with an iterative approach,
may be used in implicit calculations for some problems.

The numerical scheme we proposed in this paper may be useful in numerical simulations
for real problems, for which the equation of state and the constant Eddington factor for
radiation fields should be changed. In real applications, specially in laser fusion, equations
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FIG. 24. The temperature in the interaction between a Mach 10 shock and a denser cloud. The cloud is 103

times denser than the pre-shock state. The radiation coefficientsχ andκp are set to zero, andcκe is set to 2.5.
Initial radiation fieldser , fx, and fy are zero. At the left boundary, the values of(ρ, p, ux, er , fx, fy) are fixed,ρ,
p, andux take the values of the post-shock state, ander , fx, and fy take values 10, 104, and 0, respectively. An
open boundary condition is used at the other three sides of the simulation domain. As a comparison, the lower
image is the solution of the Euler equations at the same instant.

of state are much more complicated, and it may be tabular. The Eddington factor, if we can
use, depends on radiation fields. The approach proposed in this paper, in principle, may
be applied to this kind of equations of state, but each iteration of the iterative approach
proposed in this paper will cost more since we have to numerically evaluate the equations
of state in each iteration. Second, the distribution of photons in frequency has to be taken
into consideration for real problems.
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FIG. 25. The number of iteration needed vs the momentum absorption coefficientχ for fixed tolerance.κp

andκe are set to zero and the Courant number for radiation signals is 6.4× 103.
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